Introducing Java for Beginners: Why Java?

When the chronicle of computer languages is written, the following will be said: B led to C, C evolved into C++, and C++ set the stage for Java. To understand Java is to understand the reasons that drove its creation, the forces that shaped it, and the legacy that it inherits. Like the successful computer languages that came before, Java is a blend of the best elements of its rich heritage combined with the innovative concepts required by its unique environment.

Although Java has become inseparably linked with the online environment of the Internet, it is important to remember that Java is first and foremost a programming language. Computer language innovation and development occurs for two fundamental
reasons:
■ To adapt to changing environments and uses
■ To implement refinements and improvements in the art of programming

Java’s Lineage

Java is related to C++, which is a direct descendent of C. Much of the character of Java is inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-oriented features were influenced by C++. In fact, several of Java’s defining characteristics come from—or are responses to—its predecessors. Moreover, the creation of Java was deeply rooted in the process of refinement and adaptation that has been occurring in computer programming languages for the past three decades. For these reasons, this section reviews the sequence of events and forces that led up to Java. Each innovation in language design was driven by the need to solve a fundamental problem that the preceding languages could not solve. Java is no exception.

The Birth of Modern Programming: C

The C language shook the computer world. Its impact should not be underestimated, because it fundamentally changed the way programming was approached and thought about. The creation of C was a direct result of the need for a structured, efficient, high level language that could replace assembly code when creating systems programs. As you probably know, when a computer language is designed, trade-offs are often made, such as the following:
■ Ease-of-use versus power
■ Safety versus efficiency
■ Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one set of traits or the other. For example, although FORTRAN could be used to write fairly efficient programs for scientific applications, it was not very good for systems code. And while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its usefulness questionable for large programs. Assembly language
can be used to produce highly efficient programs, but it is not easy to learn or use effectively. Further, debugging assembly code can be quite difficult.

Approaches to programming have changed dramatically since the invention of the computer. For example, when computers were first invented, programming was done by manually toggling in the binary machine instructions by use of the front panel. As long as programs were just a few hundred instructions long, this approach worked. As programs grew, assembly language was invented so that a programmer could deal with larger, increasingly complex programs by using symbolic representations of the machine instructions. As programs continued to grow, high-level languages were introduced that gave the programmer more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an impressive first step, it is hardly a language that encourages clear and easy-to understand programs. The 1960s gave birth to structured programming. This is the method of programming championed by languages such as C. The use of structured languages enabled programmers to write, for the first time, moderately complex programs fairly easily. However, even with structured programming methods, once a project reaches a certain size, its complexity exceeds what a programmer can manage. By the early 1980s, many projects were pushing the structured approach past its limits. To solve this problem, a new way to program was invented, called object-oriented programming (OOP). OOP is a programming methodology that helps organize complex programs through the use of inheritance, encapsulation, and polymorphism.

In the final analysis, although C is one of the world’s great programming languages, there is a limit to its ability to handle complexity. Once a program exceeds somewhere between 25,000 and 100,000 lines of code, it becomes so complex that it is difficult to grasp as a totality. C++ allows this barrier to be broken, and helps the programmer comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.” However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented features. Because C++ is built upon the foundation of C, it includes all of C’s features, attributes, and benefits. This is a crucial reason for the success of C++ as a language. The invention of C++ was not an attempt to create a completely new programming language. Instead, it was an enhancement to an already highly successful one.

The Stage Is Set for Java

By the end of the 1980s and the early 1990s, object-oriented programming using C++ took hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect language. Because C++ blended the high efficiency and stylistic elements of C with the object-oriented paradigm, it was a language that could be used to create a wide range of programs. However, just as in the past, forces were brewing that would, once again, drive computer language evolution forward. Within a few years, the World Wide Web and the Internet would reach critical mass. This event would precipitate another revolution in programming.

Also Know How Java is Created?

[Source: The complete reference Java]

Join this site for more Java tutorials

** If you wanted to save/print this article, press the print button right below this post

Share this post
  • Share to Facebook
  • Share to Twitter
  • Share to Google+
  • Share to Stumble Upon
  • Share to Evernote
  • Share to Blogger
  • Share to Email
  • Share to Yahoo Messenger
  • More...
 
Posts RSSComments RSSBack to top
© 2013 Updated Tech News Results and Reviews